Kuvempu

University

STATE EDUCATION POLICY SYSTEM (SEP) & CONTINUOUS ASSESSMENT AND GRADING PATTERN (CGPA)

FOR UNDER GRADUATE PROGRAMS

B.Sc. BOTANY

III & IV SEMESTER

Syllabus and Scheme of Examination

2025 - 26

Sem	Course code	Practical/ Theory	TITLE OF THE COURSE DISCIPLINE CORE COURSE (COMPULSORY)	Hrs./ Week L:T:P	Credits	Max marks
Ι	DSCB* - Theory Microbial Diversity & Thallophyta 1.1 Theory		3 Hrs.	3	80+20	
		Practical	,,	4 Hrs.	2	40+10
П	DSCB*- 1.2 Theory Bryophytes, Pteridophytes & Gymnosperms		3 Hrs.	3	80+20	
		Practical	,,	4 Hrs.	2	40+10
	DSCB*- Theory Plant Anatomy & Embryology 1.3 Theory		3 Hrs.	3	80+20	
III		Practical	"	4 Hrs.	2	40+10
	DSEB1.1	Elective	Plant Propagation	2 Hrs.	2	40+10
	DSCB*- 1.4	Theory	Plant Ecology, Biodiversity & Conservation	3 Hrs.	3	80+20
IV		Practical	"	4 Hrs.	2	40+10
	DSEB - 1.2	Elective	Seed health testing methods	2 Hrs.	2	40+10
	DSEB - 1.2	Theory	Morphology, Taxonomy of Angiosperms & Economic Botany	3 Hrs.	3	80+20
		Practical	,,,	4 Hrs.	2	40+10
V	DCB**- 1.2	Theory	Cell Biology Genetics & Evolution	3 Hrs.	3	
		Practical		4 Hrs.	2	40+10
	DSEB - 1.3	Theory	Plant Physiology & Metabolism	3 Hrs.	3	80+20
VI		Practical	>>	4 Hrs.	2	40+10
	DCB** - 1.4	Theory	Plant breeding & Plant Biotechnology	3Hrs	3	80+20
		Practical	>>	4 Hrs.	2	40+10

ALLOCATION OF CREDITS (SEP scheme-2024-25)

DSCB* Discipline Core Course Botany; **DSEB*** Discipline Elective Botany; **DCB***Discipline Compulsory Course Botany

BOTANY - THIRD SEMESTER (SEP) - DSCB 1.3

Course No.	Theory / Practical	Credits	Instruction hour per week	Total No. of Lectures / Hours per Semester	Duration of Exam	Formative Assessment Marks	Summative Assessment Marks	Total Marks
DSCB* 1.3	Theory	03	03 Hrs.	45 Hrs.	3 Hrs.	20	80	100

Paper: Plant Anatomy & Embryology

Course outcome

- 1. Skill development for the proper description of internal structure using botanical terms, their identification and further classification.
- 2. Understanding various levels of organization in a plant body with an outlook in the relationship between the structure and function through comparative studies.
- 3. Understanding the various reproductive methods sub-stages in the life cycle of plants.
- 4. Observation and classification of the embryological variations in angiosperms.
- 5. Enthusiasm to understand evolution based on the variations in reproduction among plants.

Unit I: PLANT TISSUE SYSTEM

- 15 Hrs.

Study of meristematic and permanent tissues. Classification of meristems based on origin, function and position. Theories of histogen and *Tunica corpus*. Structure, types and functions of simple permanent tissues (parenchyma, collenchyma and sclerenchyma), complex permanent tissues (xylem and phloem).

- a) Dermal: Structure and functions of epidermis, including cuticle, bulliform cell, trichomes, and stomata; their types and distribution.
- b) Ground: Cortex, endodermis, pericycle, pith; their structure and function.
- c) Vascular: Types of vascular bundle radial, conjoint, collateral, bicollateral and concentric.

Unit II: ANATOMY

Internal structure: Dicot root – *Cicer*; Monocot root – *Canna*; Dicot stem – *Tridax* and *Cucurbita*; Monocot stem – Grass; Dicot leaf – *Tridax*; Monocot leaf – Grass.

Normal secondary growth in a typical dicot stem (E.g.: *Morus alba*) – formation of cambial ring, storied and non-storied cambium, activity of the cambium – secondary xylem, secondary phloem, vascular rays, sap wood, heart wood, growth rings, tyloses; periderm.

Secondary growth in a typical dicot root (E.g.: *Cicer*).

Anomalous secondary growth in the stem of Boerhavia and Dracaena.

UNIT III: EMBRYOLOGY

- a) Historical Account and Contributions of P. Maheshwari and B. G. L. Swamy.
- b) Microsporogenesis: Development of anther, development of male gametophyte, pollen grains.
- c) Megasporogenesis: Types of ovules, differentiation of archesporial initials, formation of megaspores, types of embryo sacs (monosporic, bisporic, tetrasporic), development of monosporic type of embryo sac (*Polygonum* type).
- d) Fertilization: Definition, syngamy (Double fertilization and triple fusion) and their significance.

- 15 Hrs.

- 15 Hrs.

e) **Endosperm:** Types – nuclear, cellular and helobial. Detailed study of cellular, haustorial type of endosperm and vermiform appendage.

Suggested readings

- 1. Bhojwani and Bhatnagar, Introduction to Embryology of Angiosperms –Oxford & IBH, Delhi.
- Bhojwani, Sant, & Saran, 2014. Current Trends in the Embryology of Angiosperms, Woong-Young Soh, Springer Netherlands.
- 3. Coutler E. G., 1969. Plant Anatomy Part I Cells and Tissues Edward Arnold, London.
- 4. Dickison, W. C. 2000. Integrative Plant Anatomy, Harcourt Academic Press, USA
- 5. Esau, K. 1990. Plant Anatomy, Wiley Eastern Pvt. Ltd. New Delhi.
- 6. Evert, R.F. 2006. Esau's Plant Anatomy: Meristem, Cells, and Tissues of the Plant Body: Their Structure, Function and Development. John Wiley and Sons, Inc
- 7. Johri, B.M. l., 1984. Embryology of Angiosperms, Springer-Verlag, Netherlands.
- Maheshwari, P. 1950. An introduction to the embryology of angiosperms. New York: McGraw-Hill.
- 9. Pandey, B. P., 1997. Plant Anatomy, S. Chand and Co. New Delhi
- Pandey S.N. 1997. Plant Anatomy and Embryology. A. Chadha, Vikas Publication House Pvt. Ltd.
- 11. Vashishta. P.C., 1984. Plant Anatomy Pradeep Publications Jalandhar

SCHEME OF QUESTION PAPER (SEP) (THEORY) III Semester B.Sc., Degree Examination Plant Anatomy & Embryology

Code: DSCB* 1.3 Time: 3 Hrs.	Max Marks: 80
Instruction: Draw neat labeled diag	rams wherever necessary
I. Answer all of the following	10 X 2 = 20
4 from Unit I	
3 from Unit II	
3 from Unit III	
II. Answer any SIX of the following	6 X 5 = 30
3 from Unit I	
2 from Unit II	
3 from Unit III	
III. Describe any THREE of the following in deta	il $3 \ge 10 = 30$
1from Unit I	
2 from Unit II	

2 from Unit III

Unit	2 Mark	5 Marks	10 Marks	Total
Ι	4 X 2 = 8	3 X 5 =15	1 X10 = 10	33
Π	3 X 2 = 6	2 X 5 = 10	2 X 10 = 20	36
	3 X 2 = 6	3 X 5 = 15	1 X 10 = 10	
III			2 X 05 = 10	41
Total	20	48	50	

Assessment		Marks
C1	Test-1	10
C ₂	Test-2	10
C ₃	Semester end exam	80

Theory Model Question Paper (SEP Scheme) III Semester – Paper III (DSCB 1.3)

Code: DSCB* 1.3 Time: 3 Hrs. Instruction: Draw neat	Plant Anatomy & Embryology labeled diagrams wherever necessary	Max Marks: 80
	Section – A	
I. Answer all of the foll	owing	$10 \ge 2 = 20$
1.		
2.		
3.		
4.		
5.		
6.		
7.		
8.		
9.		
10.		
	Section – B	
II. Answer any SIX of	the following	6 X 5 = 30
1.		
2.		
3.		
4. 5		
5. 6.		
o. 7.		
8.		
0.		
III. Describe any T	HREE of the following in detail	3 X 10 = 30
1.		
2.		

- 2.
- 3.
- 4.
- 5.

Practical Syllabus (SEP) III Semester – Paper III (DSCB 1.3) Plant Anatomy & Embryology

Code: DSCB 1.3

- 10 Practicals (1 practical of 4 Hrs./ week: 2 Credits)

- 1. Plant Tissue System: Parenchyma, Collenchyma, Sclerenchyma (fibers and sclereids); Xylem (tracheids and trachea), Phloem (sieve tube and companion cells); Types and distribution of stomata.
- 2. Anatomy: Dicot root (*Cicer*), Monocot root (*Canna*); Dicot stem (*Tridax* and *Cucurbita*), Monocot stem (Grass).
- **3.** Dicot leaf (*Tridax*), Monocot leaf (Grass);
- **4.** Normal secondary growth in dicot root (*Cicer*); Normal secondary growth in dicot stem (*Morus alba*). Anomalous secondary growth in *Boerhavia* and *Dracaena* stem.
- **5. Pollen Morphology:** Echinate, Scabrate, Psilate (*Datura, Ipomoea* and *Hibiscus*), mounting of pollinia (*Calotropis*), Pollen germination by hanging drop method in *Vinca, Datura* and *Ipomoea*.
- **6. Microsporogenesis:** Development of microspore, T.S. of anther showing different developmental stages, types of tetrads.
- **7. Megasporogenesis:** Development of megaspore, Types of ovules, *Polygonum* type of embryo sac development.
- 8. Embryo Mounting (Mustard)
- 9. Endosperm mounting (Cucumis)
- **10. Demonstration** Double Staining Technique.

Assessment		Marks
C1	Continuous assessment (CA)	05
C ₂	Assignment	05
C ₃	Semester end exam	40

Practical Question Paper Scheme (SEP) III Semester – Practical III (DSCB 1.3)

Plant Anatomy & Embryology

Max. Marks: 40

Code: DSCB 1.3

I.	Mount and sketch the endosperm/ embryo of material A and leave for evaluation	- 06
II.	Prepare a temporary stained slide of the material \mathbf{B} sketch, label and identify with reasons preparation for evaluation	. Leave the - 08
III.	Calculate the percentage of pollen germination C.	- 06
IV.	Identify the slides D , E , F , G & H , sketch and label with reason	-15
v.	Record	- 05

Practical Question Paper Scheme (SEP) III Semester – Practical III (DSCB 1.3) Plant Anatomy & Embryology

Code: DSCB 1.3 Time: 3 Hrs. M	ax. Marks: 40
I. Mount and sketch the endosperm/ embryo of material A and leave for [<i>Cucumis</i> endosperm/ Embryo of mustard] (Principle- 1; Procedure- 2; Prep	
II. Prepare a temporary stained slide of the material B sketch, label and id	lentify with
reasons. Leave the preparation for evaluation	- 08
 [Dicot/Monocot – Root/Stem/Leaf] (Identification- 1; Preparation- 3; Rease diagram- 4) III. Calculate the percentage of pollen germination C. 	ons with labeled -06
 (Procedure - 2, Preparation and results - 4) IV. Identify the slide D, E, F, G & H sketch and label with reasons [2 from tissue system; 2 from anatomy; 1 from embryology] (Identification, 1) Process with labeled diagram, 2) 	5x3=15
(Identification- 1; Reasons with labeled diagram- 2) V. Record	- 05

Note: Each student should bring the valued practical record to the practical examination for evaluation Without which he / she will not be allowed to appear for the examination.

BOTANY – THIRD SEMESTER (SEP) Open Elective Course (DSEB1.1) Paper: Plant Propagation

Course No.	Type of Course	Theory / Practical	Credits	Instruction hour per week	Total No. of Lectures / Hours per Semester	Duration of Exam	Formative Assessment Marks	Summative Assessment Marks	Total Marks
DSEB1.1	OEC	Theory	02	02 Hrs.	32 Hrs.	2 Hrs.	10	40	50

Course outcome

- 1. Explain various plant propagation structures and their utilization.
- 2. Understand advantages and disadvantages of vegetative, asexual and sexual plant propagation methods.
- 3. Assess the benefits of asexual propagation of certain economically valuable plants using apomictic and adventive polyembryony.
- 4. Demonstrate skills related to vegetative plant propagation techniques such as cuttings, layering, grafting and budding.
- 5. Apply a specific macro-propagation technique for a given plant species.

Unit 1: Basic concepts of propagation

Propagation: Definition, need and potentialities for plant multiplication; asexual and sexual methods of propagation – advantages and disadvantages.

Propagation facilities: Mist chamber, humidifiers, greenhouses, glasshouses, cold frames, hot beds, poly-houses, phytotrons nursery – tools and implements.

Identification and propagation by division and separation: Bulbs, pseudobulbs, corms, tubers and rhizomes; runners, solons, suckers and offsets.

Unit 2: Propagation by cuttings

Cuttings: Definition, different methods of cuttings; root, stem and leaf cuttings.

Stem cuttings: Definition of stem tip and section cuttings; plant propagation by herbaceous, soft wood, semi hard wood, hard wood and coniferous stem cuttings.

Physiological and biochemical basis of rooting; factors influencing rooting of cuttings; Use of plant growth regulators in rooting of cuttings.

Unit 3: Propagation by layering

Layering: Definition, principle and factors influencing layering.

Plant propagation by layering: Ground layering – tip layering, simple layering, trench layering, mound (stool) layering and compound (serpentine layering).

Air layering technique – application in woody trees.

Unit 4: Propagation by grafting and budding

Grafting: Definition, principle, types, graft incompatibility, collection of scion wood stick, scion-stock relationship, and their influences, bud wood certification; micrografting. Propagation by veneer, whip, cleft, side and bark grafting techniques.

Budding: Definition; techniques of 'T', inverted 'T', patch and chip budding.

-08 Hrs.

-08 Hrs.

-08 Hrs.

-08 Hrs.

Suggested readings

- 1. Sharma RR and Manish Srivastav. 2004. *Plant Propagation and Nursery Management*, International Book Distributing Co. Lucknow.
- Hartman, HT and Kester, D.E. 1976. *Plant Propagation: Principles and Practices*, Prentice Hall of India Pvt Ltd. Bombay.
- 3. Sadhu, M.K. 1996. Plant Propagation. New Age International Publishers, New Delhi.
- 4. Web resources suggested by the teacher concerned and college librarian including reading material.

SCHEME OF QUESTION PAPER (SEP) (THEORY) III Semester Open Elective Examination Plant Propagation

Code: DSEB1.1 Time: 2 Hrs.	Max Marks: 40
Instruction: Draw neat labeled diagrams wherever necessa	ary
I. Answer all of the following	5 X 2 = 10
1 from Unit I	
1 from Unit II	
1 from Unit III	
2 from Unit IV	
II. Answer any FOUR of the following	4 X 5 = 20
1 from Unit I	
2 from Unit II	
2 from Unit III	
1 from Unit IV	
III. Describe any ONE of the following in detail	$1 \ge 10 = 10$
1 from Unit I/ II	
1 from Unit III/ IV	

Unit	2 Mark	5 Marks	10 Marks	Total
Ι	1 X 2 = 2	1 X 5 = 5	1 V 10 10	17
П	1 X 2 = 2	2 X 5 = 10	1 X 10 = 10	22
III	1 X 2 = 2	2 X 5 = 10	$1 \times 10 = 10$	22
IV	2 X 2 = 4	1 X 5 = 5	$1 \land 10 - 10$	19
Total	10	30	20	

Assessment		Marks
C ₁	Test-1	10
C ₂	Semester end exam	80

Theory Model Question Paper (SEP Scheme) III Semester Open Elective Examination Plant Propagation

Code: DSEB1.1 Time: 2 Hrs.	Max Marks: 40
Instruction: Draw neat labeled diagrams wherever necessary	
Section – A	
I. Answer all of the following	$5 \ge 2 = 10$
1.	
2.	
3.	
4.	
5.	
Section – B	
II. Answer any FOUR of the following	4 X 5 = 20
1.	
2.	
3.	
4.	
5.	
6.	
III. Describe any ONE of the following in detail	1 X 10 = 10
1.	
2.	

BOTANY – FOURTH SEMESTER (SEP) - **DSCB 1.4 Plant Ecology, Biodiversity & Conservation**

Course No.	Theory / Practical	Credits	Instruction hour per week	Total No. of Lectures / Hours per Semester	Duration of Exam	Formative Assessment Marks	Summative Assessment Marks	Total Marks
DSCB* 1.4	Theory	03	03 Hrs.	45 Hrs.	3 Hrs.	20	80	100

Course outcome

- 1. Understanding different habit and their habitat of the organisms in the nature.
- 2. Know the biotic, abiotic factors and their importance in ecosystem.
- 3. Acquire knowledge about the various levels of biodiversity.
- 4. To create awareness about different pollutions and their effects on the environment.
- 5. Emphasize on the policies and actions regarding biodiversity conservation.

Unit I: ECOLOGY

- 15 Hrs.

Aim and Scope, Factors affecting plant growth and their distribution - Edaphic, topographic, climatic and biotic factors, study of water cycle.

Ecosystem: Concept and structure of ecosystem - pond and forest ecosystem, ecological pyramids, ecological niche, food chain, trophic level, food web, energy flow and biogeochemical cycles -

Nitrogen, Carbon and Phosphorous cycles.

Ecological Successions: Process of plant succession, hydrosere and xerosere, concept of climax vegetation.

Ecological Adaptations: Hydrophytes, Xerophytes, Epiphytes, Halophytes, Parasites and Psamophytes.

Community Ecology: Methods of studying natural vegetation by quadrats, bisects and transects.

Unit II: BIODIVERSITY AND CONSERVATION

Biodiversity: Definition, Types and Importance of Biodiversity and its impact, endemism, hot spots and conservation strategies, management of wild life, National parks and game sanctuaries.

Forestry: Deforestation, Reforestation, Afforestation and Social forestry, importance of forestry.

Conservation Ecology: Definition and types of soil erosion, control, conservation and management of soil erosion.

Phytogeography: Phytogeographical regions of India, Types of forest in India and Karnataka, Study of endemic, endangered and rare species of Karnataka.

UNIT III: ENVIRONMENTAL BIOLOGY

- 15 Hrs.

- 15 Hrs.

Environmental Pollution: A general account of air, water, land and noise pollution, their effects and management (case study with reference to India), bioremediation types and Significance.

Population Ecology: Population definition, density, natality, mortality, life table, age distribution; age pyramids, sex ratio, biotic potential and environmental resistance; population growth rate, dispersion-emigration, immigration, migration and regulation of population size.

Toxicology: Introduction, types of toxic agents on biological system, mode of action, Spectrum of toxic effects, Xenobiotics and Degradation of DDT

Suggested readings

- 1. Colinvaux, P. A. (1973). Introduction to Ecology. John Wiley.
- 2. Odum, E. P. (1983). Basic Ecology. Saunders
- Chapman, J. L., & Reiss, M. J. (2010). Ecology: Principles and Applications (2nd ed.). Cambridge University Press.
- 4. Sharma, P.D. 2018. Fundamentals of Ecology. Rastogi Publications.
- 5. Oosting, H.G. (1978): Plants and Ecosystem Wadworth Belmont.
- 6. Kochhar, P.L. (1975): Plant Ecology. (9th Edn.,) New Delhi, Bombay, Calcutta-226pp.,
- Kumar H.D. (2000): Biodiversity & Sustainable Conservation. Oxford & IBH Publishing Co Ltd. New Delhi.
- Kumar, H.D. (1992): Modern Concepts of Ecology (7th Edn.,) Vikas Publishing Co., New Delhi.
- 9. Newman, E.I. (2000): Applied Ecology, Blackwell Scientific Publisher, U.K.
- Chapman, J.L&M.J. Reiss (1992): Ecology (Principles & Applications). Cambridge University Press, U.K.
- 11. Malcolm L. Hunter Jr., James P. Gibbs, Viorel D. Popescu, 2020. Fundamentals of Conservation Biology, 4th Edition. Wiley-Blackwel.
- 12. Saha T. K., 2017. Ecology and Environmental Biology. Books and Allied Publishers.

13.

Theory Question Paper Scheme (SEP scheme) IV Semester – Paper IV (DSCB 1.4) Plant Ecology, Biodiversity & Conservation

Code: DSCB 1.4	
Time: 3 Hrs.	Max Marks: 80
Instruction: Draw neat labeled diagrams wherever necessar	ſy
I. Answer the following	10 X 2 = 20
4 from Unit I	
3 from Unit II	
3 from Unit III	
II. Answer any SIX of the following	6 X 5 = 30
3 from Unit I	
3 from Unit II	
2 from Unit III	
III. Describe any THREE of the following in detail	$3 \ge 10 = 30$
1from Unit I	
2 from Unit II	

2 from Unit III

Unit	2 Mark	5 Marks	10 Marks	Total
Ι	4 X 2 = 8	3 X 5 =15	1 X10 = 10	33
П	3 X 2 = 6	3 X 5 = 15	2 X 10 = 20	41
	3 X 2 = 6	2 X 5 = 10	1 X 10 = 10	
III			2 X 05 = 10	36
Total	20	40	50	

Assessment		Marks
C ₁	Test-1	10
C ₂	Test-2	10
C ₃	Semester end exam	80

Theory Model Question Paper (SEP Scheme) IV Semester - Paper IV (DSCB 1.4) Plant Ecology, Biodiversity & Conservation

Than Leology, Diouversity & Conservation	
Code: DSCB 1.4	
Time: 3 Hrs.	Max Marks: 80
Instruction: Draw neat labeled diagrams wherever necessary	
Section – A	
I. Answer the following	$10 \ge 2 = 20$
1.	
2.	
3.	
4.	
5.	
6.	
7.	
8.	
9.	
10.	
Section – B	
II. Answer any SIX of the following	6 X 5 = 30
1.	
2.	
3.	
4.	
5.	
6.	
7.	
8.	
III. Describe any THREE of the following in detail	3 X 10 = 30
1.	
3	

- 2.
- 3.
- 4.
- 5.

Practical Syllabus (SEP scheme) **IV Semester - Practical IV (DSCB 1.4) Plant Ecology, Biodiversity & Conservation**

Code: DSCB 1.4 - 10 Practicals (1 practical of 4 Hrs./ week: 2 Credits)

- Study of Ecological Groups: Ecological Modifications
 Hydrophytes: Hydrilla sp., Pistia sp., Jussiaea sp., Eichornia sp. and Trapa sp.
 Xerophytes: Casuarina sp., Euphorbia tirucalli and Opuntia sp., Nerium leaf.
 Halophytes: Avicennia sp. Pneumatophores, Rhizophora sp. Vivipary
- Parasites: Cuscuta sp., Viscum sp. and Loranthus sp.
 Psamophytes: Spinifex sp., Ipomoea biloba and Salicornia
 Epiphytes: Vanda root, Bulbophyllum.
 Ecological Anatomy: Hydrilla spp., Jussiaea spp., Casuarina stem, Nerium leaf and Vanda root.
- 3. Ecological Instruments: Rain gauge, Anemometer, Air hygrometer, wet and dry bulb thermometer.
- 4. Study of soil pH (pH paper method)
- 5. Water holding capacity of soil
- 6. Determination of dissolved oxygen in polluted and unpolluted water
- 7. Application of remote sensing to vegetation analysis using satellite imageries.

Study of a pond/forest ecosystem and recording the different biotic and abiotic components.

- 8. Field visit to study the different types of vegetation.
- 9. Mapping of vegetation types of Karnataka
- 10. Study of plant community by quadrat method

Assessment		Marks
C ₁	Continuous assessment (CA)	05
C ₂	Assignment	05
C ₃	Semester end exam	40

Practical Question Paper (SEP) IV Semester - Practical IV (DSCB 1.4) Plant Ecology, Biodiversity & Conservation

Code: DSCB 1.4 Time: 3 Hrs.	Max. Marks: 40
I. Prepare a temporary stained mounting of 'A'	-06
II. Write critical notes on B and C	-08
III.Comment on ecological instrument	-04
IV. Estimation of P^H of soil/ Water holding capacity/ Dissolved oxygen in v	water -04
V. Identify the slides E, F & G with reasons	-09
VI. Mapping of vegetation of Karnataka	-04
VII. Record	-05

Practical Question Paper Scheme (SEP) IV Semester - Practical IV (DSCB 1.4) Plant Ecology, Biodiversity & Conservation

C h DCCD 1.4	
Code: DSCB 1.4 Time: 3 Hrs.	Max. Marks: 40
 I. Prepare a temporary stained mounting of 'A' [Ecological anatomy – Hydrophytes/ Xerophytes/ Epiphytes] (Preparation – 2, Identification – 01, Sketch & label – 01, Comment on ecolog 	-06 gical anatomy - 02)
II. Write critical notes on B and C [Ecological modifications] (Identification – 01, Sketch & label – 01, Commer	-08 nt02)
III.Comment on ecological instrument (Identification – 01, Sketch & label – 01, Comment – 02)	-04
IV. Estimation of P ^H of soil/ Water holding capacity/ Dissolved oxygen in water (Procedure–01, Performance–02, Result–01)	-04
V. Identify the slides/ photograph E, F & G with reasons (Identification – 01, Reasons– 02)	-09
VI. Mapping of vegetation of Karnataka	-04
VII. Record	-05

Note: Each student should bring the valued practical record to the practical examination without which he or she will not be allowed to appear for the examination.

BOTANY – FOURTH SEMESTER (SEP) Open Elective Course (DSEB1.2) Paper: Seed Health Testing Methods

Course No.	Type of Course	Theory / Practical	Credits	Instruction hour per week	Total No. of Lectures / Hours per Semester	Duration of Exam	Formative Assessment Marks	Summative Assessment Marks	Total Marks
DSEB1.2	OEC	Theory	02	02 Hrs.	32 Hrs.	2 Hrs.	10	40	50

Course outcome

- 1. To understand the Features, Structure and Importance of Dicot and Monocot seeds.
- 2. To study various seed health testing methods.
- 3. To acquire the knowledge of seed quality for agriculture.

Unit 1: Introduction:

Structure of monocot and dicot seeds; seed quality: objectives, concept and components and their role in seed quality control; instruments, devices and tools used in seed testing. ISTA and its role in seed testing.

Seed Sampling: definition, objectives, seed-lot and its size; types of samples; sampling devices; procedure of seed sampling; sampling intensity; methods of preparing composite and submitted samples; sampling in the seed testing laboratory.

Unit 2: Physical Purity:

Definition, objective and procedure, weight of working samples for physical purity analysis; components of purity analysis and their definitions and criteria; pure seed definitions applicable to specific genera and families; multiple seed units; general procedure of purity analysis; calculation and reporting of results, prescribed seed purity standards; determination of husk less seeds; determination of weed seed and other seed by number per kilogram; determination of test weight and application of heterogeneity test.

Seed moisture content: importance of moisture content; equilibrium moisture content; principles and methods of moisture estimation - types, instruments and devices used; pre-drying and grinding requirements, procedural steps in moisture estimation; calculation and reporting of results.

Unit 3: Germination:

Importance; definitions; requirements for germination, instrument and substrata required; principle and methods of seed germination testing; working sample and choice of method; general procedure for each type of method; duration of test; seedling evaluation; calculation and reporting of results; dormancy: definition, importance, causal mechanisms, types and methods for breaking dormancy.

Viability and Vigour Testing: definition and importance of viability tests; different viability tests; quick viability test (TZ- test) - advantages, principle, preparation of seeds and solutions, procedure, evaluation and calculation of test results. Vigour testing: concept, historical development, definitions, principles and procedures of different methods used for testing vigour.

Unit 4: Seed health Testing:

Field and seed standards; designated diseases, objectionable weeds - significance of seed borne disease vis-a-vis seed quality - seed health testing and detection methods for seed borne fungi, bacteria, viruses and nematodes.

Preparation and dispatch of seed testing reports; storage of guard samples; application and use of seed standards and tolerances

-08 Hrs.

-08 Hrs.

-08 Hrs.

-08 Hrs.

- 1. Basavaraju, G. V., Ravishankar, P. & Gowdiperu, S. 2014. *A textbook of seed science and technology*. Kalyani Publishers.
- 2. JHA, D. K. 1993. A textbook of Seed Pathology. Vikas Publishing House Pvt. Ltd.
- 3. Harpal Singh Tomar. *Seed Technology*. Rama Publishing House
- 4. Agarwal, R. L. (2018). Seed technology. Oxford and IBH Publishing.
- 5. Dahiya, B. S. & Rai, K. N. (1997). Seed technology. Kalyani Publishers.
- 6. Basra, A. (Ed.). (2024). Handbook of seed science and technology. CRC Press

SCHEME OF QUESTION PAPER (SEP) (THEORY) IV Semester Open Elective Examination Seed Health Testing Methods

Code: 1 Time: 2		truction: Dra	w neat labeled di	agrams wherever	Max Mark necessary	ks: 40
I. Ansv	wer the fol	llowing			05 X	2 = 10
	1 from U	nit I				
	1 from Ur	nit II				
	1 from Ur	nit III				
	2 from Ur	nit IV				
II. An	nswer any	FOUR of the	e following		4 X	5 = 20
	1 from Un	it I				
	2 from Un	it II				
	2 from Un	it III				
	1 from Un					
III. De	scribe any	ONE of the	following in deta	il	1 X 1	10 = 10
	1 from U	Jnit I/ II				
	1 from U	Jnit III/ IV				
	Unit	1 Mark	6 Marks	10 Marks	Total	

Unit	1 Mark	6 Marks	10 Marks	Total
Ι	1 X 2 = 2	1 X 5 =10	1 X10 = 10	22
Π	1 X 2 = 2	2 X 5 = 10		22
III	1 X 2 = 2	2 X 5 = 10	1 X 10 = 10	22
IV	2 X 2 = 4	1 X 5 = 5	$1 \land 10 - 10$	19
Total	20	48	50	

Assessment		Marks
C ₁	Test-1	10
C ₂	Semester end exam	40

Theory Model Question Paper (SEP) IV Semester Open Elective Examination Seed Health Testing Methods

Code: DSEB1.2 Time: 2 Hrs. Instruction: Draw neat labeled diagrams wherever necessary	Max Marks: 40
Section – A	
I. Answer the following	$5 \ge 2 = 10$
1.	
2.	
3.	
4.	
5.	
Section – B	
II. Answer any FOUR of the following	4 X 5 = 20
1.	
2.	
3.	
4.	
5.	
6.	
Section – C	1 X 10 = 10
III. Describe any ONE of the following in detail	
1.	

2.